Jump to content

Search the Community

Showing results for tags 'sunlight'.



More search options

  • Search By Tags

    Type tags separated by commas.
  • Search By Author

Content Type


Forums

  • Moving to Australia
    • Visa Chat
    • Skilled Visas
    • Family / Partner Visas
    • Temporary Visas
    • Business Skills Visas
    • Business Sponsored
    • Visitor Visas
    • Shipping and Removals
  • Life in Australia
    • Aussie Chat
    • Household
    • Renting & Real Estate
    • Money & Finance
    • Education
    • Health
    • Careers and Vacancies
    • Kids Down Under
    • Pets
    • Socialising Hobbies Clubs Sport
    • Travel
  • Australian States & Territories
    • ACT
    • New South Wales
    • Northern Territory
    • Queensland
    • South Australia
    • Tasmania
    • Victoria
    • Western Australia
  • Partner Forums
    • Money Transfer: Ask Moneycorp
    • Financial Advice: Ask Vista
    • Shipping Pets: Ask Pet Air
  • Moving to the UK
    • UK Chat
    • Education
    • Where to Live?
    • Money and Finance
  • PomsInOz Specific
    • Chewing the fat

Categories

  • Migration
  • Living in Australia
  • Jobs and Careers
  • Moving to Australia Real Life Stories
  • Money and Finance
  • Transport
  • Where to live in Australia?
    • Victoria
    • Queensland
    • New South Wales
    • Tasmania
    • Western Australia
    • South Australia
  • Backpacking
  • News
  • Forum Help

Blogs

There are no results to display.

There are no results to display.


Find results in...

Find results that contain...


Date Created

  • Start

    End


Last Updated

  • Start

    End


Filter by number of...

Joined

  • Start

    End


Group


Found 1 result

  1. Scientists are working to convert sunlight to cheap electricity at South Dakota State University. Research scientists are working with new materials that can make devices used for converting sunlight to electricity cheaper and more efficient. Assistant professor Qiquan Qiao in SDSU’s Department of Electrical Engineering and Computer Science said so-called organic photovoltaics, or OPVs, are less expensive to produce than traditional devices for harvesting solar energy. Qiao and his SDSU colleagues also are working on organic light-emitting diodes, or OLEDs. The new technology is sometimes referred to as “molecular electronics” or “organic electronics” — organic because it relies on carbon-based polymers and molecules as semiconductors rather than inorganic semiconductors such as silicon. “Right now the challenge for photovoltaics is to make the technology less expensive,” Qiao said. “Therefore, the objective is find new materials and novel device structures for cost-effective photovoltaic devices. “The beauty of organic photovoltaics and organic LEDs is low cost and flexibility,” the researcher continued. “These devices can be fabricated by inexpensive, solution-based processing techniques similar to painting or printing." “The ease of production brings costs down, while the mechanical flexibility of the materials opens up a wide range of applications,” Qiao concluded. Organic photovoltaics and organic LEDs are made up of thin films of semiconducting organic compounds that can absorb photons of solar energy. Typically an organic polymer, or a long, flexible chain of carbon-based material, is used as a substrate on which semiconducting materials are applied as a solution using a technique similar to inkjet printing. “The research at SDSU is focused on new materials with variable band gaps,” Qiao said. “The band gap determines how much solar energy the photovoltaic device can absorb and convert into electricity.” Qiao explained that visible sunlight contains only about 50 percent of the total solar energy. That means the sun is giving off just as much non-visible energy as visible energy. “We’re working on synthesizing novel polymers with variable band gaps, including high, medium and low-band gap varieties, to absorb the full spectrum of sunlight. By this we can double the light harvesting or absorption,” Qiao said. SDSU’s scientists plan to use the variable band gap polymers to build multi-junction polymer solar cells or photovoltaics. These devices use multiple layers of polymer/fullerene films that are tuned to absorb different spectral regions of solar energy. Ideally, photons that are not absorbed by the first film layer pass through to be absorbed by the following layers. The devices can harvest photons from ultraviolet to visible to infrared in order to efficiently convert the full spectrum of solar energy to electricity. SDSU scientists also work with organic light-emitting diodes focusing on developing novel materials and devices for full color displays. “We are working to develop these new light-emitting and efficient, charge-transporting materials to improve the light-emitting efficiency of full color displays,” Qiao said. Currently, LED technology is used mainly for signage displays. But in the future, as OLEDs become less expensive and more efficient, they may be used for residential lighting, for example. The new technology will make it easy to insert lights into walls or ceilings. But instead of light bulbs, the lighting apparatus of the future may look more like a poster, Qiao said. Qiao and his colleagues are funded in part by SDSU’s electrical engineering Ph.D. program and by National Science Foundation and South Dakota EPSCoR, the Experimental Program to Stimulate Competitive Research. In addition Qiao is one of about 40 faculty members from SDSU, the South Dakota School of Mines and Technology and the University of South Dakota who have come together to form Photo Active Nanoscale Systems (PANS). The primary purpose is developing photovoltaics, or devices that will directly convert light to electricity. Quantum Dot Recipe May Lead To Cheaper Solar Panels (May 4, 2007) — Scientists have developed a new method for cost-effectively producing four-armed quantum dots that have previously been shown to be particularly effective at converting sunlight into electrical ... > read more [/url] Energetic Nanoparticles Swing Sunlight Into Electricity (Feb. 22, 2008) — The electrons in nanoparticles of noble metal oscillate together apace with the frequency of the light. This phenomenon can be exploited to produce better and cheaper solar cells, scientists have ... > read more Technology Could Use Moon Dust To Capture Sun Power; University Of Houston Solar Cell Research Has Applications For Space Exploration, Clean Cars (Oct. 8, 2002) — New technologies designed to harness the power of the sun may hold the key to successful moon colonies, cheaper and lighter-weight satellites, and cleaner-burning, more efficient car ... > read more Nanowire Generates Its Own Electricity (Oct. 23, 2007) — Chemists have built a new wire out of photosensitive materials that is hundreds of times smaller than a human hair. The wire not only carries electricity to be used in vanishingly small circuits, but ... > read more Think Solar Not Nuclear For The Energy Of The Future, Say Scientists (Mar. 6, 2006) — Solar rather than nuclear energy should be the UK government's priority in planning future energy production, according to scientists writing today in the journal Nature ... > read more :chatterbox:
×